Surmise Relations Between Tests - Mathematical Considerations

نویسندگان

  • Silke Brandt
  • Dietrich Albert
  • Cord Hockemeyer
چکیده

In 1985, Doignon and Falmagne introduced surmise relations for representing prerequisite relationships between items within a body of information for the assessment of knowledge. Often it is useful to partition such a body of information into sub-collections. As we are primarily interested in psychological applications, we refer to these sub-collections as tests. We extend the concept of surmise relations between items within tests to surmise relations between tests. Three di7erent kinds of surmise relations between tests are investigated with respect to their properties. Furthermore, the corresponding knowledge spaces for tests and their bases are introduced. The relationship of this set theoretical approach to a Boolean matrix representation is discussed. Finally, we give a short overview about the further research regarding this mathematical model. It will be the foundation for a software system that will be used for analyzing test data. Other applications in 9elds like curriculum development and structuring hyper-texts can easily be imagined. ? 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Test Surmise Relations, Test Knowledge Structures, and Their Characterizations

This paper investigates natural, left-, right-, and total-covering test surmise relations on a set of tests partitioning the domain of a knowledge structure. The properties of reflexivity, transitivity, and antisymmetry are examined. In particular, it is shown that the property of antisymmetry is satisfied for the left-, right-, and total-covering test surmise relations when the underlying know...

متن کامل

The Correlational Agreement Coefficient CA(≤, D) - a mathematical analysis of a descriptive goodness-of-fit measure

The Correlational Agreement Coefficient, CA(V,D), was introduced by J.F.J. van Leeuwe in 1974 within Item Tree Analysis (ITA), a data-analytic method to derive quasi orders (surmise relations) on sets of bi-valued test items. Recently, it has become of interest in connection with Knowledge Space Theory (KST). The coefficient CA(V,D) is used as a descriptive goodness-offit measure to select out ...

متن کامل

Knowledge Spaces for Inductive Reasoning Tests

Die Wissensraumtheorie (Doignon & Falmagne, 1985;1999), in der Testitems durch sog. Vermutungsrelationen geordnet werden, wurde verallgemeinert, um Vermutungsrelationen zwischen Tests zu definieren (Albert, 1995, Brandt, Albert & Hockemeyer, 1999;accepted). Als erste exemplarische Anwendung dieses Modells werden verschiedene Typen von induktiven Denkaufgaben nach dem Prinzip der komponentenweis...

متن کامل

Knowledge Space Theory

This document explains algorithms and basic operations of knowledge structures and knowledge spaces available in R through the kst package. Knowledge Space Theory (Doignon and Falmagne, 1999) is a set-theoretical framework, which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The most basic assumption of knowledge space theory is that every knowl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2003